Automated Security Testing of
deployed infrastructure

Presenting our work and knowledge from SCS
@ ALASCA Summit 2024

Dominik Pataky, Kurt Garloff

Overview

1. Intro to the topic of pentesting
2. Background and context of the project

o Infrastructure layer
3. Implementation in SCS o Container layer

4. Review and methodology transfer

Pentesting?

= Penetration testing
Method of testing for security weaknesses and vulnerabilities in IT

Experts run offensive tests in specified scope
o Beware of legal issues in DE (Hackerparagraph §202c StGB) and
other countries

Also part of “red teaming” (attack team)

Complements the theoretical and design work by looking for issues
with the implementation

Pentesting? (2)

e Should be done regularly © Own interest to keep everything secure

e Some people are required to test
o Compliance reasons

o Mainly by contracting a third party

o Highly skilled and expensive engineers required

e 8 Can partially be automated!

Pentesting in SCS

e Scope and lawful compliance can be worked on by many orgs

e Automated pentesting according to SCS Security Standards is
equivalent to Compliance Test Suite for Platform Standards

e Continuous integration and Cl testing has enabled a new level a
quality assurance and development velocity

e Do the same for Security: Secure SDLC, shift left (automated tests in
stage of development)

Context for SCS VP09c

e VPO9c name of the SCS tender for “penetration testing”. Two steps:
1. Run pentests against SCS infra and find problems to be fixed

2. Automate these tests as much as possible

e Automation allows re-running and replicability
o Important, if tests shall run at multiple CSP sites

Preliminary work: pentesting laaS

e Pentesting experts installed laaS layer testbed instances

e Used environment for real pentest
o Results substitutional for SCS instances at CSP sites

o Findings were reported to upstream and fixed

e Final report available to SCS for further reference

SCS Best Practices in Security (1)

e SCS also empowers open discussions around security topics
o Also driven by VP0O9c

e Leads to SCS Best Practices, standards, guides

e Ecosystem exchange with patches and docs

SCS Best Practices in Security (2)

e Reporting potential vulnerabilities
o Use Security Advisories in Security Tab in github SCS issues repo -
> allows for restricting audience prior to publication
= Prevent confusion by false positives

= Avoid helping black hat hackers from using insight to hack our
CSPs

o Separate from our security contact mailing list reporting process

o Separate from public advisories (SCS Blog)

Implementation in SCS

e The testbed pentest provided the ground work for implementation
of security tooling

e Pentesters gained experience, insight on where to look
o SCS = stack of open source components

o Each component has its specific attack surface

Implementation in SCS: laaS

e For laaS, deployed infra is scanned regularly
e Build server pipeline as reference implementation

e Docs @ https:/docs.scs.community/docs/category/pentesting-iaas

(https://docs.scs.community/docs/category/pentesting-iaas)

https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas
https://docs.scs.community/docs/category/pentesting-iaas

Implementation in SCS: laa$ tools

Pipeline: Zuul

Basic scanning: Naabu, httpx, Nuclei
Vulnerability scan: ZAP, OpenVAS

Report management: DefectDojo

Targets

Q ZAP

Baseline Scan Full Scan

Greenbone

dJEFECTOJ0J0O

i= @ 7

r L3

518

Search..

0

Closed In Last Seven
Days

View Finding Details [+]

Viaw Finding Delails o

Reported Finding Severity by Month

O Active Engagements Last Seven Days
¥ View Engagement Details ~ © View Finding Details o |
B
Y Historical Finding Severity
= W Critical 250
W High
L‘! Medium
Wlow 200
[y Informational
E=)
= 150
or 100
2 .

0o

W Critical

mHigh
Medium

mLow

Implementation in SCS: Kaa$S

e Container layer, Kubernetes

e Two modes:
o ad-hoc from Zuul (unauthenticated, “black box testing”)

o continuously as Operator (authenticated test from inside the
cluster)

e Docs @ https:/docs.scs.community/docs/category/pentesting-kaas

(https://docs.scs.community/docs/category/pentesting-kaas)

https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas
https://docs.scs.community/docs/category/pentesting-kaas

Implementation in SCS: Kaa$ tools

e Focus on Trivy as scanning tool

e Widely accepted security utility in Kubernetes environments
o k8s-native and tailored to common weaknesses in Kubernetes

o Surprise: No native export to DD or S3

e Export to DefectDojo o Self-built export cronjob

Review of methodology

Chosen tools fit SCS components
BUT: reference implementation! Tools are interchangable
More important than tool choice is a good methodology

Creating the pipeline of tools proved very helpful
o especially in context of automation (infra-as-code, laC)

Outlook and adaptability

e Methodology can be adapted to ALASCA projects
o Trivy for all things k8s (creates a set of reports)

e YAOOK o [aaS scanner instances spawned automatically
e YAKE?

Conclusion and questions

e Summary

e Questions from audience?

